Eneko's Digital Garden

Powered by 🌱Roam Garden

L^,S^=arg min⁑L,S∣Yβˆ’HSL∣F2+Ξ»L∣Lβˆ£βˆ—+(1βˆ’Ο)∣SDS∣2,1+ρ∣SDS∣1\hat{\mathbf{L}}, \hat{\mathbf{S}} = \argmin_{\mathbf{L, S}} | \mathbf{Y} - \mathbf{HS} \mathbf{L} |_F^2 + \lambda_L |\mathbf{L}|_* + (1-\rho) | \mathbf{SD}_S |_{2,1} + \rho |\mathbf{SD}_S |_1

βˆ£β‹…βˆ£F2| \cdot |_F^2 denotes the Frobenius norm.

The β„“2,1+β„“1\ell_{2,1} + \ell_1 norm promotes temporal sparsity and spatial structure to the estimates of the activity-inducing signal.

ρ=0.8\rho = 0.8 (empirically set) balances the trade-off between temporal sparsity and spatial structure.

DS=diag(Ξ»S1,...,Ξ»SV)\mathbf{D}_S = diag(\lambda_{S_1}, ..., \lambda_{S_V}) is a diagonal matrix with voxel-specific regularization parameters to promote the sparsity of S\mathbf{S}.

For each voxel, we set Ξ»S\lambda_S to the median absolute deviation estimate of the noise standard deviation from the fine-scale wavelet coefficients of the voxel time series (Daubechies, order 3).

The nuclear norm βˆ£β‹…βˆ£βˆ—| \cdot |_* promotes the detection of low-rank, global components.

A Low Rank and Sparse Paradigm Free Mapping Algorithm for Deconvolution of fMRI Data